Станки: является официальным дистрибьютором оборудования для лазерной резки, пробивки.. Ультрасовременные системы ЧПУ созданы специально для станков для обработки листового металла. Автоматическое планирование и управление производством, статистика и прогнозирование износа инструмента. Понятное многоуровневое меню, цветной сенсорный интерфейс на русском языке, занесение 3d моделей из Solidworks в ЧПУ гибочного пресса.


Камеры глаза – все о зрении

Передняя и задняя камера глаза

Камеры глаза – это замкнутые полости внутри глазного яблока, соединенные зрачком и заполненные внутриглазной жидкостью. У человека выделяют две камерные полости: переднюю и заднюю. Рассмотрим их строение и функции, а также перечислим патологии, которые могут затронуть эти части органов зрения.

Строение глазных камер и их функции

Передняя камера глаза расположена сразу за его роговицей. Поэтому с внешней стороны она ограничена эндотелием роговой оболочки, состоящим из одного слоя плоских клеток.

С боковых сторон происходит ограничение углом передней камеры глаза. А обратная поверхность полости представляет собой переднюю поверхность радужной оболочки и тело хрусталика.

Глубина передней камеры переменная. Максимальную величину она имеет возле зрачка и составляет 3,5 мм. С удалением от центра зрачка к периферии (боковой поверхности) полости, глубина равномерно уменьшается. Но при удалении хрустальной капсулы или отслойке сетчатки глубина может значительно изменяться: в первом случае она увеличится, во втором же – уменьшится.

Под передней сразу находится задняя камера глаза. По форме она представляет собой кольцо, так как центральная часть полости занята хрусталиком. Поэтому с внутренней стороны кольца камерная полость ограничивается его экватором.

Внешняя часть граничит с внутренней поверхностью цилиарного тела.

Спереди находится задний листок радужной оболочки, а позади камерной полости располагается внешняя часть стекловидного тела – гелеобразной жидкости, по оптическим свойствам напоминающая стекло.

Внутри задней камеры глаза расположено много очень тонких ниточек, которые называются цинновыми связками. Они необходимы для управления капсулой хрусталика и цилиарным телом.

Именно благодаря им возможно сокращение цилиарной мышцы, а также связок, с помощью которых изменяется форма хрусталика.

Такая особенность строения зрительного органа дарит человеку возможность видеть одинаково хорошо как на маленьком, так и на большом расстоянии.

Обе камеры глаза заполнены внутриглазной жидкостью. По составу она напоминает плазму крови. Жидкость содержит питательные элементы и передает их глазным тканям изнутри, обеспечивая работу зрительного органа.

Дополнительно она принимает от них продукты обмена веществ, которые впоследствии перенаправляет в общее кровяное русло. Объем камерных полостей глаза находится в диапазоне 1,23-1,32 мл.

И весь он заполнен этой жидкостью.

Важно, чтобы соблюдался строгий баланс между выработкой (образованием) новой и оттоком отработавшей внутриглазной влаги. Если он смещается в ту или иную сторону, нарушаются зрительные функции.

Если объем выработанной жидкости превышает объем покинувшей полость влаги, то развивается внутриглазное давление, которое ведет к развитию глаукомы. Если же в отток уходит жидкости больше, чем она вырабатывается, давление внутри камерных полостей падает, что грозит субатрофией зрительного органа.

Любое из нарушений баланса опасно для зрения и ведет, если не к потере зрительного органа и слепоте, то, как минимум к ухудшению зрения.

Выработка жидкости для заполнения глазных камер осуществляется в цилиарных отростках способом процеживания кровяного тока из капилляр – мельчайших сосудов. Выделяется в заднем камерном пространстве, затем поступает в переднее. Впоследствии оттекает через поверхность угла передней камеры. Этому способствует разность давлений в венах, которые будто всасывают в себя отработавшую жидкость.

Анатомия УПК

Угол передней камеры, или УПК – это периферийная поверхность передней камеры, где роговая оболочка плавно переходит в склеру, а радужка – в цилиарное тело. Наибольшую важность представляет дренажная система УПК, к функциям которой относится контроль оттока отработавшей внутриглазной влаги в общее кровяное русло.

В состав дренажной системы глаза входят:

  • Венозный синус, размещающийся в склере.
  • Трабекулярная диафрагма, включающая юкстаканаликулярную, корнео-склеральную и увеальную пластинки. Сама диафрагма – это густая сеть с пористо-слоистной структуой. К наружной стороне размер диафрагмы становится меньше, что полезно в контроле за оттоком внутриглазной жидкости.
  • Коллекторные канальца.

Сначала внутриглазная влага попадает в трабекулярную диафрагму, далее в небольшой просвет Шлеммова канала. Он расположен возле лимба в склере глазного яблока.

Отток жидкости может осуществляться другим способом – через увеосклеральный путь. Так в кровь уходит до 15% от ее отработавшего объема.

При этом влага из передней камеры глаза сначала переходит в цилиарное тело, после чего продвигается по направлению мышечных волокон. Впоследствии проникает в супрахориоидальное пространство.

Из этой полости происходит отток по венам-выпускникам через Шлеммов канал или склеру.

Канальцы синуса в склере отвечают за отведение влаги в вены по трем направлениям:

  • В венозные сосуды цилиарного тела;
  • В эписклеральные вены;
  • В венозное сплетение внутри и на поверхности склеры.

Патологии передней и задней глазных камер и способы их диагностики

Любые нарушения, связанные с оттоком жидкости внутри полостей зрительного органа, приводят к ослаблению или утере зрительных функций, важно своевременно выявлять возможные заболевания. Для этого используются следующие диагностические методы:

  • Осмотр глаз в проходящем свете;
  • Биомикроскопия – осмотр органа с помощью увеличивающей щелевой лампы;
  • Гониоскопия – изучение угла передней глазной камеры с использованием увеличивающих линз;
  • Ультразвуковое исследование (иногда совмещается с биомикроскопией);
  • Оптическая когерентная томография (кратко – ОКТ) передних частей зрительного органа (метод позволяет исследовать живые ткани);
  • Пахиметрия – диагностический метод, позволяющий оценить глубину передней глазной камеры;
  • Тонометрия – измерение давления внутри камер;
  • Детальный анализ количества выработанной и оттекающей жидкости, заполняющей камеры.

Тонометрия

С помощью описанных выше методов диагностики можно выявить врожденные аномалии:

  • Отсутствие угла в передней полости;
  • Блокада (закрытие) УПК частицами эмбриональных тканей;
  • Прикрепление радужки спереди.

Приобретенных в течение жизни патологий много больше:

  • Блокада (закрытие) УПК корнем радужной оболочки глаза, пигментом или другими тканями;
  • Малые размеры передней камеры, а также бомбаж радужки (эти отклонения выявляются при зарастании зрачка, что в медицине именуется круговой зрачковой синехией);
  • Неравномерно изменяющаяся глубина передней полости, обусловленная перенесенными ранее травмами, повлекшими за собой ослабление цинновых связок или смещение хрусталика в сторону;
  • Гипопион – заполнение передней полости гнойным содержимым;
  • Преципитат – твердый осадок на эндотелиальном слое роговицы;
  • Гифема – попадание крови в полость передней глазной камеры;
  • Гониосинехии – спайка (сращение) тканей в углах передней камеры радужки и трабекулярной сети;
  • Рецессия УПК – расщепление или разрыв передней части цилиарного тела вдоль линии, разделяющей продольные и радиальные мышечные волокна, принадлежащие этому телу.

Гифема

Чтобы сохранить зрительную способность, важно своевременно посещать окулиста. Он определит изменения, происходящие внутри глазного яблока, и подскажет, как их предотвратить. Профилактический осмотр необходим раз в год. Если же зрение резко ухудшилось, появились боли, вы заметили излияния крови в полость органа, посетите врача внепланово.

Камерами называют замкнутые, связанные между собой пространства глаза, содержащие внутриглазную жидкость. Глазное яблоко включает две камеры, переднюю и заднюю, которые через зрачок связаны между собой.

Передняя камера помещается сразу за роговицей, отграниченная сзади радужной оболочкой. Расположение задней камеры — непосредственно за радужкой, задней ее границей служит стекловидное тело.

В норме, эти две камеры имеют постоянный объем, регулирование которого происходит посредством образования и оттока внутриглазной жидкости.

Выработка внутриглазной жидкости (влаги) происходит посредством ресничных отростков цилиарного тела, в задней камере, а оттекает она в массе своей через систему дренажей, занимающую угол передней камеры, а именно область соединения роговицы и склеры — цилиарного тела и радужной оболочки.

Главная функция камер глаза — организация нормальных взаимоотношений внутриглазных тканей, а кроме того участие в проведении к сетчатки глаза световых лучей.

Кроме того, они задействованы совместно с роговицей в преломлении входящих световых лучей.

Преломление лучей обеспечивается идентичными оптическими свойствами внутриглазной влаги и роговой оболочки, которые действуют вместе, как собирающая свет линза, формирующая четкое изображение на сетчатке.

Строение камер глаза

Переднюю камеру снаружи ограничивает внутренняя поверхность роговой оболочки – ее эндотелиальный слой, по периферии — наружная стенка угла передней камеры, сзади же, передняя поверхность радужки и передняя капсула хрусталика.

Глубина ее неравномерна, в области зрачка она наибольшая и достигает 3,5 мм, постепенно уменьшаясь дальше к периферии.

Однако, в некоторых случаях, глубина в передней камере увеличивается, (примером может служить удаление хрусталика), либо уменьшается, как при отслоении сосудистой оболочки.

Позади передней камеры расположена задняя камера, передней границей которой, является задний листок радужки, наружной — внутренняя сторона цилиарного тела, задней границей — передний отрезок стекловидного тела, внутренней — экватор хрусталика.

Внутреннее пространство задней камеры пронизывают многочисленные тончайшие нити, так называемые цинновые связки, соединяющие капсулу хрусталика и цилиарное тело.

Напряжение либо расслабление цилиарной мышцы, а вслед за ней и связок, обеспечивает изменение формы хрусталика, что дает человеку способность видеть хорошо на разных расстояниях.

Внутриглазная влага, заполняющая объем камер глаза, имеет состав, сходный с плазмой крови, неся питательные вещества, нужные для работы внутренних тканей глаза, а также продукты обмена, выводящиеся далее в кровоток.

В камеры глаза вмещается только 1,23-1,32 см3 водянистой влаги, но строгое равновесие между ее выработкой и оттоком чрезвычайно важно для функции глаза.

Любое нарушение данной системы может вести к росту внутриглазного давления, как при глаукоме, а также, к его снижению, что случается при субатрофии глазного яблока.

При этом, каждое из указанных состояний, весьма опасно и грозит полной слепотой и потерей глаза.

Выработка внутриглазной жидкости происходит в цилиарных отростках путем фильтрации потока крови капиллярного кровотока. Образованная в задней камере, жидкость поступает в переднюю, а после оттекает через угол передней камеры за счет разницы в давлении венозных сосудов, в которые влага и всасывается в окончании.

Читайте также:  Язва роговицы глаза - все о зрении

Угол передней камеры

Углом передней камеры называют зону, соответствующую области перехода роговой оболочки в склеру и радужки в цилиарное тело. Основная составляющая этой зоны — дренажная система, обеспечивающая и контролирующая отток внутриглазной жидкости по пути в кровоток.

Дренажную систему глазного яблока составляют: трабекулярная диафрагма, склеральный венозный синус и коллекторные канальцы.

Трабекулярную диафрагму, можно представить, как густую сеть, имеющую слоистую и пористую структуру, причем ее поры постепенно уменьшаются кнаружи, делая возможным регулирование оттока внутриглазной влаги.

В трабекулярной диафрагме, принято выделять увеальную, корнео-склеральную, а также юкстаканаликулярную пластинки. Пройдя трабекулярную сеть, жидкость оттекает в щелевидное пространство, названное Шлеммовым каналом, который локализован у лимба в толще склеры, вдоль окружности глазного яблока.

Вместе с тем, существует еще один, дополнительный путь оттока, так называемый, увеосклеральный, который минует трабекулярную сеть.

Через него проходит почти 15% объема оттекающей влаги, которая поступает из угла в передней камере к цилиарному телу вдоль мышечных волокон, попадая далее в супрахориоидальное пространство.

Затем она оттекает по венам выпускникам, сразу через склеру или через Шлеммов канал.

По коллекторным канальцам склерального синуса, водянистая влага отводится в венозные сосуды в трех направлениях: в глубокое и поверхностное склеральные венозные сплетения, эписклеральные вены, сеть вен цилиарного тела.

Видео о строении камер глаза

Диагностика патологий камер глаза

Для выявления патологических состояний камер глаза, традиционно назначают следующие методы диагностики:

  • Визуальное исследование в проходящем свете.
  • Биомикроскопию – осмотр со щелевой лампой.
  • Гониоскопию – визуальное исследование угла передней камеры со щелевой лампой при помощи гониоскопа.
  • Ультразвуковую диагностику, включая и ультразвуковую биомикроскопию.
  • Оптическую когерентную томографию переднего отрезка глаза.
  • Пахиметрию передней камеры с оценкой глубины камеры.
  • Тонографию, для детального выявления количества выработки и оттока водянистой влаги.
  • Тонометрию для определения показателей внутриглазного давления.

Симптомы поражения камер глаза при различных заболеваниях

Врожденные аномалии

  • Отсутствует угол передней камеры.
  • Радужная оболочка имеет переднее прикрепление.
  • Угол передней камеры блокирован остатками эмбриональных тканей, которые не рассосались к моменту рождения.

Приобретенные изменения

  • Угол передней камеры блокирован корнем радужки, пигментом или пр.
  • Мелкая передняя камера, бомбаж радужки, что встречается при заращении зрачка или круговой зрачковой синехии.
  • Неравномерность глубины передней камеры, которая обусловлена изменением положения хрусталика вследствие травмы либо слабости цинновых связок глаза.
  • Гипопион — скопление в передней камере гнойных выделений.
  • Гифема — скопление в передней камере крови.
  • Преципитаты на эндотелии роговой оболочки.
  • Рецессия или разрыв угла передней камеры, из-за травматического расщепление в переднем отделе цилиарной мышцы.
  • Гониосинехии – спайки (сращения) радужки и трабекулярной диафрагмы в углу передней камеры.

Поделитесь ссылкой на материал в социальных сетях и блогах:

Записаться на прием

График работы клиники в Новогодние праздники

Источник: http://lechi-glaz.ru/perednyaya-i-zadnyaya-kamera-glaza/

Камеры глаза: строение, функции, симптомы и лечение

В системе зрения каждый элемент имеет строгое предназначение, даже камеры глаза, несмотря на то, что представляют собой лишь пустое пространство, заданного объема имеют большое значение для надежной работы зрительного аппарата.

Ведь в природе нет ничего лишнего, и даже полости и пустоты в строении внутренних органов являются не случайными оплошностями, а скорее наоборот высоким полетом научной мысли.

Что такое камеры глаза?

Камеры глаза — замкнутые, но сообщающиеся друг с другом через зрачок полости, заполненные внутриглазной жидкостью. Обеспечивают взаимодействие тканей органов зрения, проводят свет к сетчатке, участвуют в преломлении световых потоков наряду с роговицей.

В зрительном аппарате имеется в наличие две камеры, одна из которых расположена в передней части глазного яблока, а вторая в задней.

Благодаря таким отделам человеческий глаз получает необходимую жидкость для обеспечения подвижности, а также имеет возможность избавиться от излишков влаги, для предохранения глазных тканей от отеков.

Наружной гранью передней камеры является внутренняя стенка роговицы, сзади данный отсек ограничивается тканями радужной оболочки и небольшой зоной хрусталика.

Глубина такой капсулы неравномерна, наибольшей глубины пустотелое образование достигает в зрачковой области, а к краям запасы пустого пространства уменьшаются.

Позади первой камеры располагается второй задний отсек, который в своей передней части ограничен радужной оболочкой, а сзади соединяется со стекловидным телом.

По всему периметру своих границ, задняя камера пронизана специальными цинновыми связками. Такие соединительные элементы обеспечивают прочную связь цилиарного тела и капсулы хрусталика.

Именно сжатие и расслабление таких связок в совокупности с цилиарной мышечной группой провоцируют изменение размеров хрусталика, которое в свою очередь дает человеку возможность одинаково хорошо видеть на различных расстояниях.

Камеры глаз выполняют весьма важную и ответственную функцию в системе нашего зрения. Работа отростков цилиарного тела обусловила образование жидкости в пространстве задней глазной камеры.

Данная влага необходима для того, чтобы предохранить нежные ткани глазного яблока от пересыхания и обеспечить его свободное движения по пространству глазницы.

В то же время скопление излишков жидкости в глазной области может привести к отеканию некоторых отделов глазного яблока и спровоцировать достаточно серьезное расстройство в зрительном аппарате.

Здесь на выручку приходит передняя камера, в угловой части которой расположена разветвленная система дренажных отверстий, через которые излишки жидкости беспрепятственно покидают глазное яблоко.

Основное назначение данных камер заключается как раз в поддержании нормального состоянии всех тканей глаза, также данные отсеки участвуют в транспортировке светового потока до области сетчатки и преломлении световых лучей.

Камеры глаза выполняют весьма важную функцию в работе всего зрительного аппарата, поэтому симптомы нарушения в их гармоничном взаимодействии не стоит игнорировать.

Все тревожные сигналы можно условно разделить на две категории врожденных и приобретенных с течением жизни нарушений.

К врожденным дефектам, как правило, относится изменение угла в передней камере, нарушение данного угла не рассосавшимися к моменту рождения ребенка остатками эмбриональных тканей или неправильное крепление тканей радужной оболочки.

Все остальные изменения в работе камер глаза обычно приобретаются в течение жизни и обусловлены различными травмами или заболеваниями, как зрительной системы, так и всего организма в целом.

Диагностика

В связи с высокой сложностью строения зрительной системы, многие нарушения в ее функционировании нельзя заметить при внешнем осмотре, поэтому для постановки правильного диагноза пациенту назначается полный комплекс диагностических лабораторных исследований.

Чтобы правильно оценить степень поражения камеры глаза может применяться осмотр в условиях проходящего света или с применением микроскопов. Также специалисту может понадобиться измерить угол передней камеры в ходе микроскопического исследования с дополнительным применением увеличивающей линзы.

https://www.youtube.com/watch?v=sYRpbbx4Qa4

Кроме того в данном ракурсе активно применяется оптическое и ультразвуковое оборудование, оценивается глубина камеры и измеряется внутриглазное давление. Также определяется степень оттока жидкости из внутреннего пространства глазного яблока.

Лечение дисфункции камер глаза или их конструктивных элементов может проводиться только в условиях специализированной клиники с применением всего комплекса необходимого оборудования.

В основном терапия в данном случае должна быть направлена на купирование причин спровоцировавших нарушение в работе зрительного механизма.

5 из 5:

Источник: https://www.zrenimed.com/stroenie-glaza/kamery-glaza

Различие в восприятии камеры и глаза

Нередко изображение камеры не совпадает с той картиной окружающего мира, которую видит человек, ее снимающий.
В данной статье мы опишем разницу этих картин и попытаемся объяснить, откуда она берется.

Здесь будут рассматриваться особенности обычных фото и видео камер, не имеющие специальных возможностей (например, рентгена или тепловизора), широко распространенные и применяемые очевидцами, чтобы запечатлеть НОФ.

Благодаря особенностям восприятия камеры на изображениях могут проявляться как «ложные НОФ», так и значимые детали, объясняющие НОФ, не видимые наблюдателю.

Первые в большом количестве собраны в разделе «Версии», поэтому подробно о них мы рассказывать не будем. Далее пойдет речь о том, какие детали, невидимые наблюдателю, может запечатлеть камера.

Об особенностях зрительного восприятия человека можно прочесть в отдельной статье на нашем сайте. Здесь мы коснемся только некоторых из них. 

Первая особенность человеческого зрения, которую стоит упомянуть, – его избирательность. Человек замечает то, что интересно, и игнорирует незначимые детали.

Поэтому восприятие человеком зависит от ожиданий, начальной информации, настроения и других параметров.

Камера же, в отличие от человека, беспристрастна и может запечатлеть всю картину, которую можно рассмотреть потом более основательно.

Поле зрения, восприимчивое к деталям, у человека очень невелико – около трёх градусов. Периферическое зрение чувствительно не к деталям, а прежде всего к движению.

Поэтому для получения в мозгу детального изображения окружающей обстановки глаз постоянно сканирует ее и каждое мгновение посылает в мозг информацию об отдельных фрагментах, из которых потом формируется целостная картина.

Такой принцип восприятия мира, с учетом избирательности в необычной обстановке, иногда способствует пропуску важных деталей.

Последняя особенность зрительного восприятия человека следует из предыдущей – большое время реакции на событие. При малой длительности происшествия человек может воспринять только определенную область окружающего пространства и пропустить большую часть информации.

Все эти особенности приводят к тому, что показания каждого из очевидцев, как правило, не описывают полной картины происходивших событий.

Именно поэтому при исследовании НОФ (как и при расследовании любого события) так важно опросить всех имеющихся свидетелей.

Ну а фотосъемка или видеозапись происшествия обладают огромной ценностью, так как позволяют устранить субъективизм свидетельств и детально изучить запечатленные события.

Читайте также:  Покраснение глаз - все о зрении

При этом камера имеет ряд особенностей, не характерных для человеческого глаза:

  • Восприятие за пределами видимого глазом диапазона частот. Это, в частности, объясняется чувствительностью ПЗС матрицы в ИК-области. При этом чёрно-белые камеры, как правило, имеют чувствительность на порядки выше, чем цветные камеры. [1] Эта особенность позволяет как регистрировать на камеру объекты, не видимые человеком при нормальном освещении (например, загорающийся ИК-светодиод пульта дистанционного управления), так и использовать ее для съемки в условиях низкого освещения (камеры ночного видения).

ИК-светодиод

  • Возможность регулирования времени экспонирования. Человеческий глаз обладает постоянной инерционностью зрения, и попавший на его светочувствительный элемент фотон света оказывает действие, постоянное и конечное по своей продолжительности. В камере же можно менять продолжительность этого действия, изменяя время экспозиции и заставляя таким образом светочувствительные элементы накапливать информацию, получаемую в течение этого времени. Эта возможность как позволяет делать качественные фотографии при низкой освещенности, так и приводит к появлению на снимках артефактов, обусловленных дрожанием рук или попаданием в кадр объектов, время нахождения которых на одном месте существенно меньше времени экспозиции. Такие объекты могут как «размазываться» по снимку при низкой скорости перемещения (превращаясь в «призраков» или «скайфиш»), так и вовсе не регистрироваться на нем при высокой.

«Скайфиш» [2]

  • Наличие вспышки или дополнительного источника света при съемке. Это может быть как положительным фактором, позволяющим делать качественные снимки в условиях низкой освещенности, так и отрицательным, порождающим «ложные факты», например, в виде бликов и отражений на стеклах и блестящих поверхностях.

Отражение на стекле

  • Дискретность снятия информации при съемке видео (конечная частота кадров), приводящая к появлению стробоскопического эффекта в отснятом материале.

Несмотря на возможность изменения характеристик в широком диапазоне значений, камеры остаются искусственными приборами, и имеют ряд ограничений по сравнению со зрительным механизмом человека:

  • Фотоаппарат экспонирует всю сцену с постоянными, предустановленными значениями диафрагмы, выдержки и чувствительности, и потому не в состоянии охватить разницу в степени освещённости высококонтрастной сцены. Результатом съемки такой сцены, как правило, является равномерно засвеченный фон.

Разница в освещенности сцены, которую человеческий глаз воспринимает нормально

  • Человеческому зрению свойственно цветопостоянство. Наш мозг выравнивает цветовой баланс таким образом, чтобы предметы по возможности сохраняли для нас свои естественные цвета независимо от цвета освещения. При съемке же изменение цвета освещения объекта неизбежно приводит к изменению цвета самого объекта.

Фотография или видеозапись НОФ может дать дополнительную и чрезвычайно ценную информацию экспертам при расследовании факта. Однако при их анализе необходимо учитывать особенности регистрации окружающей действительности конкретной камерой, ее параметры и условия применения.

Источник: https://www.fern-flower.org/ru/articles/razlichie-v-vospriyatii-kamery-i-glaza

Бионический глаз – искусственная зрительная система :

Бионический глаз – что это? Именно такой вопрос возникает у людей, которые впервые столкнулись с этим термином. В приведенной статье мы подробно на него ответим. Итак, приступим.

Определение

Бионический глаз – это устройство, позволяющее слепым различать ряд визуальных объектов и компенсировать в определённом объёме отсутствие зрения. Хирурги имплантируют его в повреждённый глаз в качестве протеза сетчатки. Тем самым они дополняют искусственными фоторецепторами сохранившиеся в сетчатке неповреждённые нейроны.

Принцип действия

Бионический глаз состоит из полимерной матрицы, снабжённой фотодиодами. Она фиксирует даже слабые электрические импульсы и транслирует их нервным клеткам.

То есть сигналы преобразуются в электрическую форму и воздействуют на нейроны, которые сохранились в сетчатке. У полимерной матрицы есть альтернативы: инфракрасный датчик, видеокамера, особые очки.

Перечисленные устройства могут восстановить функцию периферийного и центрального зрения.

Встроенная в очки видеокамера записывает картинку и отправляет её в процессор-конвертор. А тот, в свою очередь, преобразует сигнал и отсылает его ресиверу и фотосенсору, который вживлён в сетчатку глаза больного. И только потом электрические импульсы передаются в мозг пациента через оптический нерв.

Специфика восприятия изображения

За годы исследований бионический глаз претерпел множество изменений и доработок. В ранних моделях картинка передавалась с видеокамеры сразу в глаз пациента. Сигнал фиксировался на матрице фотодатчика и поступал по нервным клеткам в мозг. Но в этом процессе был один недостаток – разность в восприятии изображения камерой и глазным яблоком. То есть они работали не синхронно.

Другой подход состоял в следующем: вначале видеоинформация отправлялась в компьютер, который преобразовывал видимое изображение в инфракрасные импульсы. Они отражались от стёкол очков и попадали через хрусталик в глазную сетчатку на фотосенсоры. Естественно, пациент не может видеть ИК-лучи.

Но их воздействие аналогично процессу получения изображения. Иными словами, перед человеком с бионическими глазами формируется доступное для восприятия пространство.

А происходит это так: картинка, полученная от действующих фоторецепторов глаза, накладывается на изображение от камеры и проецируется на сетчатку.

Новые стандарты

С каждым годом биомедицинские технологии развиваются семимильными шагами. В данный момент собираются внедрять новый стандарт для системы искусственного зрения. Это матрица, каждая сторона которой будет содержать по 500 фотоэлементов (9 лет назад их было всего 16).

Хотя, если провести аналогию с человеческим глазом, содержащим 120 млн палочек и 7 млн колбочек, то становится понятен потенциал дальнейшего роста.

Стоит отметить, что информация передаётся в головной мозг через миллионы нервных окончаний, а потом их уже самостоятельно обрабатывает сетчатка.

Argus II

Этот бионический глаз был разработан и сделан в США компанией «Ясновидение». 130 пациентов с заболеванием пигментный ретинит воспользовались его возможностями. Argus II состоит из двух частей: встроенной в очки мини-видеокамеры и имплантата.

Все объекты окружающего мира фиксируются на камеру и передаются в имплантат через процессор по беспроводной связи. Ну а имплантат с помощью электродов активирует имеющиеся у больного клетки сетчатки, отправляя информацию прямиком в зрительный нерв.

Пользователи бионического глаза уже через неделю чётко различают горизонтальные и вертикальные линии. В дальнейшем качество зрения через это устройство только возрастает. Argus II стоит 150 тысяч фунтов стерлингов.

Однако исследования не прекращаются, так как разработчики получают различные денежные гранты. Естественно, искусственные глаза ещё довольно несовершенны.

Но учёные делают всё, чтобы качество передаваемой картинки улучшилось.

Бионический глаз в России

Первым пациентом, которому в нашей стране вживили устройство, стал 59-летний челябинец Александр Ульянов. Операция шла на протяжении 6 часов в Научно-клиническом центре оториноларингологии ФМБА.

За периодом реабилитации пациента следили лучшие офтальмологи страны. На протяжении этого времени в установленный Ульянову чип регулярно пускали электрические импульсы и отслеживали реакцию.

Александр показывал отличные результаты.

Конечно, он не различает цветов и не воспринимает многочисленные объекты, доступные здоровому глазу. Окружающий мир Ульянов видит размыто и в чёрно-белом цвете. Но и этого ему достаточно для абсолютного счастья. Ведь последние 20 лет мужчина вообще был слепым.

А сейчас его жизнь полностью изменил установленный бионический глаз. Стоимость операции в России составляет 150 тыс. рублей. Ну и плюс цена самого глаза, которая была указана выше.

Пока устройство выпускают только в Америке, но со временем в России должны появиться аналоги.

Источник: https://www.syl.ru/article/344602/bionicheskiy-glaz-iskusstvennaya-zritelnaya-sistema

Камера и человеческий глаз

Почему нельзя просто направить камеру на то, что видишь, и снять это? Этот вопрос кажется простым.

Тем не менее, на него очень непросто дать ответ, и для этого потребуется изучить не только то, как камера записывает свет, но и то, как работают наши глаза и почему они работают именно так.

Разбираясь в этом, можно открыть для себя что-то новое о нашем повседневном восприятии мира — помимо возможности стать лучшим фотографом.

 VS. 

Общие сведения

Наши глаза способны окидывать происходящее взглядом и динамически адаптироваться в зависимости от объекта, в то время как камера записывает одиночное неподвижное изображение.

Многие считают это основным преимуществом глаз перед камерой.

Например, наши глаза способны компенсировать дисбаланс яркости различных предметов, могут смотреть по сторонам, чтобы получить более широкий угол зрения, а также могут фокусироваться на объектах на различных расстояниях.

Однако результат скорее подобен работе видеокамеры — не фото — поскольку наше сознание собирает несколько взглядов в один мысленный образ. Быстрый взгляд наших глаз был бы более честным сравнением, но в итоге уникальность нашей зрительной системы неопровержима, поскольку:

То, что мы видим, является мысленной реконструкцией объектов на основе образов, предоставленных глазами — отнюдь не тем, что наши глаза в действительности увидели.

Вызывает скепсис? У большинства — по крайней мере поначалу. Следующие примеры демонстрируют ситуации, в которых сознание можно заставить видеть нечто отличное от того, что видят глаза:

ложный цвет полосы Маха

Ложный цвет: наведите курсор на край изображения и смотрите на центральный крест. Отсутствующий кружок будет перемещаться по кругу, и через некоторое время начнёт казаться зелёным — хотя в изображении зелёного цвета нет.

Полосы Маха: наведите курсор на изображение. Каждая из полос покажется чуть темнее или светлее вблизи верхней или нижней границы, соответственно, — несмотря на то, что каждая из них окрашена равномерно.

Впрочем, это не должно помешать нам сравнивать наши глаза и камеры! Во многих случаях честное сравнение всё же возможно, но только если мы принимаем во внимание и то, как мы видим, и то, как наше сознание обрабатывает эту информацию. Последующие разделы проведут границу между этими двумя, насколько возможно.

Читайте также:  «отпечаток» глаза, как отпечаток пальца - все о зрении

Обзор различий

Данная статья группирует сравнения по следующим визуальным категориям:

  1. угол зрения
  2. различимость деталей
  3. чувствительность и динамический диапазон

Всё это зачастую считается предметом максимальных отличий глаз от камеры, и как раз по этому поводу возникает больше всего разногласий. Есть и другие характеристики, такие как глубина резкости, объёмное зрение, баланс белого и цветовая гамма, но они не являются предметом данной статьи.

1. Угол зрения

Для камер он определяется фокусным расстоянием объектива (а также размером сенсора). Например, фокусное расстояние телеобъектива больше, чем стандартного потретного, а потому угол зрения меньше:

К сожалению, с нашими глазами не всё так просто. Хотя фокусное расстояние человеческого глаза приблизительно равно 22 мм, эта цифра может ввести в заблуждение, поскольку глазное дно закруглено (1), периферия нашего поля зрения значительно менее детальна, чем центр (2), и к тому же то, что мы видим, является комбинированным результатом работы двух глаз (3).

Каждый глаз по отдельности имеет угол зрения порядка 120-200°, в зависимости от того, насколько строго объекты определены как “наблюдаемые”.

Соответственно, зона перекрытия двух глаз составляет порядка 130° — она практически настолько же широка, как у объектива типа “рыбий глаз”.

Однако по эволюционным причинам наше периферийное зрение пригодно только для обнаружения движения и крупных объектов (таких как прыгающий сбоку лев). Более того, настолько широкий угол выглядел бы сильно искажённым и неестественным, будучи снятым камерой.

 левый глаз оба глаза правый глаз

Наш центральный угол зрения — порядка 40-60° — максимально влияет на наше восприятие. Субъективно это соотносится с углом, в пределах которого вы сможете вспомнить объекты, не двигая глазами.

Кстати, это близко к углу зрения “нормального” объектива с фокусным расстоянием 50 мм (если совсем точно, то 43 мм) на камере полного кадра или 27 мм на камере с кроп-фактором 1.6.

Хотя он и не воспроизводит полный угол нашего зрения, он хорошо передаёт то, как мы видим, достигая наилучшего компромисса между различными типами искажений:

Сделайте угол зрения слишком большим, — и разница в размерах объектов будет преувеличена, ну а слишком узкий угол зрения делает относительные размеры объектов практически одинаковыми, и вы теряете ощущение глубины. Сверхширокие углы к тому же ведут к тому, что объекты по краям кадра оказываются растянуты.

искажение перспективы

(при съёмке стандартным/прямолинейным объективом)

Для сравнения, несмотря на то, что наши глаза создают искажённое широкоугольное изображение, мы реконструируем его в объёмный мысленный образ, в котором искажения отсутствуют.

2. Различимость и детальность

Большинство современных цифровых камер имеют 5-20 мегапикселей, что зачастую преподносится как полный провал по сравнению с нашим собственным зрением. Это основано на том факте, что при идеальном зрении человеческий глаз по разрешающей способности эквивалентен 52-мегапиксельной камере (принимая за угол зрения 60°).

Однако эти подсчёты вводят в заблуждение. Лишь наше центральное зрение может быть идеальным, так что в действительности мы никогда не достигаем такой детальности за один взгляд.

По мере удаления от центра наши зрительные способности драматически падают — настолько, что всего на 20° от центра наши глаза различают уже всего одну десятую от исходной детальности.

На периферии мы обнаруживаем только крупномасштабный контраст и минимум цветов:

Качественное представление визуальной детальности одного взгляда.

Принимая это во внимание, можно утверждать, что один взгляд наших глаз способен различать детали всего лишь сравнимые с 5-15 мегапикселями камеры (в зависимости от зрения). Однако наше сознание в действительности не запоминает образы попиксельно; оно записывает памятные детали, цвет и контраст для каждого изображения по-разному.

В результате, чтобы воссоздать детальный зрительный образ, наши глаза фокусируются на нескольких представляющих интерес предметах, быстро их чередуя. Вот наглядное представление нашего восприятия:

исходная сцена предметы интереса

Конечным результатом является зрительный образ, детальность которого эффективно приоритизируется на основе интереса.

Из этого следует важное для фотографов, но часто оставляемое без внимания свойство: даже если снимок максимально использует всю технически возможную детальность камеры, эта детальность не будет иметь особого значения, если сам по себе снимок не содержит ничего запоминающегося.

К прочим важным отличиям того, как наши глаза различают детали, относятся:

Асимметрия. Каждый глаз способен воспринимать больше деталей ниже линии зрения, чем выше, а периферийное зрение гораздо более чувствительно по направлению от носа. Камеры снимают изображения абсолютно симметрично.

Зрение при слабом свете. В условиях очень слабого света, например, лунного или звёздного, наши глаза фактически начинают видеть монохромно.

В таких ситуациях наше центральное зрение к тому же становится менее зорким, чем слегка в сторону от центра.

Многие астрофотографы в курсе этого и извлекают из этого преимущества, глядя чуть в сторону от неяркой звезды, если хотят разглядеть её невооружённым глазом.

Малые градации. Различимости малейших деталей зачастую уделяется чрезмерное внимание, однако малые тональные градации тоже важны — и похоже, именно по этой части наши глаза и камеры отличаются сильнее всего.

Для камеры увеличенную деталь всегда легче передать на снимке — а вот для наших глаз, хоть это и противоречит интуиции, увеличение детали может сделать её менее видимой.

На следующем примере оба изображения содержат текстуру с одинаковым контрастом, однако на изображении справа она не видна, поскольку была увеличена.


больше в 16 раз
мелкая текстура
(едва видна)
грубая текстура
(не видна)

3. Чувствительность и динамический диапазон

Динамический диапазон является одной из характеристик, по которой глаз зачастую рассматривают как имеющий огромное преимущество.

Если рассматривать ситуации, в которых наш зрачок расширяется и сужается, адаптируясь к разнице яркостей, тогда да, наши глаза намного превосходят возможности одиночного снимка (и могут иметь диапазон, превышающий 24 f-ступени*).

Однако в таких ситуациях наши глаза динамически адаптируются, как это делает видеокамера, так что это, очевидно, нечестное сравнение.

фокус на фоне фокус на переднем плане зрительный образ

Если же вместо этого мы оценим мгновенный динамический диапазон нашего глаза (при неизменной ширине зрачка), то камеры будут выглядеть намного лучше. Аналогию можно получить, глядя на один элемент сцены, дав глазам настроиться и не глядя никуда более.

В этом случае как правило говорят, что наши глаза могут воспринимать динамический диапазон порядка 10-14 f-ступеней, что абсолютно перекрывает большинство компактных камер (5-7 ступеней), но на удивление недалеко от возможностей зеркальных камер (8-11 ступеней).

С другой стороны, динамический диапазон нашего глаза зависит также от яркости и контраста предмета, так что вышесказанное справедливо только при обычном дневном свете. При слабом звёздном свете, например, наши глаза могут достичь гораздо более широкого моментального динамического диапазона.

* Динамический диапазон. Наиболее распространённой единицей его измерения в фотографии является f-ступень, так что мы продолжим её использовать.

Динамический диапазон описывает соотношение яркостей наиболее яркого и наиболее тёмного предметов в кадре в степенях двойки.

То есть, в сцене с динамическим диапазоном в 3 f-ступени белый цвет в 8 раз ярче чёрного (покольку 23 = 2x2x2 = 8).

фиксация движения чувствительность к слабому свету

Авторами левого (спички) и правого (ночное небо) снимков являются lazlo и dcysurfer, соответственно.

Чувствительность. Это ещё одна важная зрительная характеристика, которая описывает способность различать нечёткие или быстродвижущиеся предметы.

При ярком свете современные камеры превосходят возможности зрения относительно быстродвижущихся объектов, как показано ниже весьма необычно выглядящим результатом скоростной съёмки.

Это зачастую возможно для камер со светочувствительностью ISO свыше 3200; эквивалент светочувствительности ISO для человеческого глаза при дневном свете считается равным всего лишь 1.

Впрочем, при слабом свете чувствительность наших глаз существенно возрастает (если дать им не менее получаса на адаптацию). Астрофотографы часто оценивают её диапазоном ISO 500-1000; всё же не настолько высока, как у цифровых камер, но близко.

С другой стороны, камеры имеют преимущество в том, что способны посредством длительной выдержки выявлять и ещё более неяркие объекты, тогда как наши глаза не увидят никаких новых подробностей, рассматривая что-нибудь дольше, чем 10-15 секунд.

Итоги и дополнительная информация

Можно возразить, что рассуждения о том, может ли камера превзойти зрение, непоследовательны, поскольку для камер требуется другой стандарт: они нужны для создания реалистично выглядящих отпечатков.

Напечатанный снимок не знает, на каких предметах сфокусируется глаз, так что каждая часть кадра должна быть предельно детальна — просто на случай, если она привлечёт внимание. Это в особенности справедливо для больших или рассматриваемых с близкого расстояния отпечатков.

Однако можно и возразить, что дать сравнительную оценку возможностям камеры тоже полезно.

В целом, большинство преимуществ нашей зрительной системы проистекают из того факта, что наше сознание способно разумно интерпретировать информацию, передаваемую глазами, тогда как в случае с камерой всё, что у нас есть, — это результат работы сенсора.

Но даже в этом случае современные цифровые камеры справляются на удивление неплохо, а по некоторым визуальным характеристикам даже превосходят наши глаза.

По-настоящему выигрывает тот фотограф, который способен разумно собрать несколько снимков — и тем самым превзойти даже изображение, реконструированное сознанием.

Дополнительную информацию по данной теме вы можете найти в следующих статьях:

Источник: https://www.cambridgeincolour.com/ru/tutorials-ru/cameras-vs-human-eye.htm

Ссылка на основную публикацию
Adblock
detector